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Summary: lecture 7

Various methods in MTT

• Performance evaluation using OSPA

• Track to Track fusion

• Track Before Detect

• Extended Target Tracking (ETT)

• Group Tracking

We will now leave the classical MTT for an alternative set representation.

Detection Gating Association STT Track/Hypothesis logic
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References on Random Finite Set Methods: general

• B.-N. Vo, M. Mallick, Y. Bar-Shalom, S. Coraluppi, R. Osborne, III, R. Mahler, and

B.-T. Vo. Multitarget Tracking.
Wiley Encyclopedia of Electrical and Electronics Engineering, 2015.
URL https:

//www.researchgate.net/publication/283623828_Multitarget_Tracking

• R. P. S. Mahler. Multitarget Bayes filtering via first-order multitarget moments.
IEEE Transactions on Aerospace and Electronic Systems, 39(4):1152–1178, 2003

https://www.researchgate.net/publication/283623828_Multitarget_Tracking
https://www.researchgate.net/publication/283623828_Multitarget_Tracking
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References on Random Finite Set Methods: PHD filters

• B.-N. Vo and W.-K. Ma. The Gaussian mixture probability hypothesis density filter.
IEEE Transactions on Signal Processing, 54(11):4091–4104, 2006.
doi: 10.1109/TSP.2006.881190

• D. Fränken, M. Schmidt, and M. Ulmke. ”Spooky action at a distance” in the
cardinalized probability hypothesis density filter.
IEEE Transactions on Aerospace and Electronic Systems, 45(4):1657–1664, 2009.
ISSN 00189251.
doi: 10.1109/TAES.2009.5310327

• G. Hendeby and R. Karlsson. Gaussian mixture PHD filtering with variable
probability of detection.
In 17th International Conference on Information Fusion (FUSION), pages 1–7, 2014
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References on Random Finite Set Methods: LMB filters

• S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer. The labeled multi-Bernoulli filter.
IEEE Transactions on Signal Processing, 62(12):3246–3260, 2014

• B.-N. Vo, B.-T. Vo, and D. Phung. Labeled random finite sets and the Bayes
multi-target tracking filter.
IEEE Transactions on Signal Processing, 62(24):6554–6567, 2014
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References on Random Finite Set Methods: PMBM filters

• J. Williams. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and
association-based MeMBer.
IEEE Transactions on Aerospace and Electronic Systems, 51(3):1664–1687, July
2015

• Á. F. Garćıa-Fernández, J. L. Williams, K. Granström, and L. Svensson. Poisson
multi-Bernoulli mixture filter: Direct derivation and implementation.
IEEE Transactions on Aerospace and Electronic Systems, 54(4):1883–1901, 2018
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Properties of Classic Tracking Methods

• State of the art: Multi-hypothesis tracker (MHT)
• Combines several more or less independent components:

Single target tracking
Association
Track creation, maintenance, deletion
Outliers

• No common mathematical formulation for all
components.

• Separate methods for complexity reduction.
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Desired Tracking Method Properties

Targets and Measurements

PHDs

Figures obtained from random set filtering website
http://randomsets.eps.hw.ac.uk/

• One unified mathematical formulation.

• Solve the problem with methods that integrate
all parts in one.

• Complexity reductions as approximations to
mathematical formulation, instead of
engineering solutions.

http://randomsets.eps.hw.ac.uk/
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Tracking Assumptions

• Number of targets, unknown and varies over time.

• Origin of observations, unknown.

• Independent measurements (independent measurement noise).

• Independent motion (targets do not influence each other).

• Each target produces at most one observation (point target
assumption), and each observation stem from at most one target.

• Measurements can be missed and clutter exist.
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Tracking Problem Seen as a Set Problem

• Should describe the same fundamental problem the classic
method, and fulfill the same assumptions.

• The targets in a scene, can be seen as a set of tracks with
unknown cardinality (number of elements in the set).

• The observations in a scan is a set of measurements.

• Sets are unordered. This has implications for track labeling and
the association process.

• The task is to estimate the cardinality, and the state of each
track, both assumed stochastic, using Bayesian methods.
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Solutions Using the Set Formulation

• Random finite sets (RFSs) describes sets of random elements and random
cardinality.

• RFS based approaches propagate the posterior density of the multi-target state
recursively in time, hence describing the complete tracking problem.

• Several different approximations of this exist:

Probability Hypothesis Density (PHD): propagate first moment
Cardinalized PHD (CPHD): also propagate the cardinality
Multi-Bernoulli filters: propagates the parameters of a multi-Bernoulli distribution that
approximate the posterior multi-target density
Poisson Multi-Bernoulli Mixture (PMBM): propagates unobserved targets as a PHD
and observed targets as a MB mixture.

• Labeling: sometimes disregarded in these methods, but can be added (target id).



RFS Preliminaries
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Random Finite Sets (RFS)

Examples:

• ∅, {3.14}, {2.7, 9.82}, examples of a RFS of real numbers.

• Let xik ∈ Rnx for i = 1, . . . ,∞. Then, some realizations X of the
random variable X can be ∅, {x1k}, {x1k, x2k}, {x1k, x2k, x3k}, . . . .
Note: {x2k, x1k} is the same as {x1k, x2k} as sets are unordered.

• Yt all observations obtained in the scan at time t.

• Xt all targets at time t.

Definition: random finite set (RFS)

A random finite set X is a random variable that has realizations in the form
X = X ∈ S where S is the set of all finite subsets of some underlying space S.
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Random Sets: connections to normal random stochastic variables

Random fintite sets

• Every element is a random stochastic variables (RSV), with a PDF.

• The cardinality is a discrete positive RSV, with a PDF.

Random finite sets properties

• It is possible to compute the probability of a certain instance, Pr(X).

• The belief mass function has the same purpose as the PDF of normal RSV, but
does not sum to 1 but instead the cardinality of the RFS.

• It is possible to integrate over RFS
∫
p(X) δX, with “minor” modifications to how

the integral is computed.
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Random Sets: connections to normal random stochastic variables

It is possible to define a PDF for the RFS (with a slight abuse of
notation):

p({x(1), x(2), . . . , x(n)}|n) = n!p(x(1), x(2), . . . , x(n))

Hence, we also need to define integrals over sets.

Definition (Set Integral)∫
p(X) δX = p(∅) +

∫
p(x(1)) dx(1) +

1

2!

∫
p(x(1), x(2)) dx(1)dx(2)

+
1

3!

∫
p(x(1), x(2), x(3)) dx(1)dx(2)dx(3) + . . .
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General Bayesian Filtering Solution
With these tools, we want to approximate the Bayesian filtering solution,

p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1) dxt−1 (TU)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (MU)

In this case with RFSs as input and states (with slight abuse of notation):

p(Xt|Yt−1) =

∫
p(Xt|Xt−1)p(Xt−1|Yt−1) δXt−1 (TU-RFS)

p(Xt|Yt) =
p(Yt|Xt)p(Xt|Yt−1)

p(Yt|Yt−1)
. (MU-RFS)

In principal the solutions are very similar, but due to technicalities, the implementation is
quite different.



Target Tracking Le 8: RFS tracking G. Hendeby, R. Karlsson Dec 15, 2021 18 / 49

General Bayesian Filtering Solution
With these tools, we want to approximate the Bayesian filtering solution,

p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1) dxt−1 (TU)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (MU)

In this case with RFSs as input and states (with slight abuse of notation):

p(Xt|Yt−1) =

∫
p(Xt|Xt−1)p(Xt−1|Yt−1) δXt−1 (TU-RFS)

p(Xt|Yt) =
p(Yt|Xt)p(Xt|Yt−1)

p(Yt|Yt−1)
. (MU-RFS)

In principal the solutions are very similar, but due to technicalities, the implementation is
quite different.



Target Tracking Le 8: RFS tracking G. Hendeby, R. Karlsson Dec 15, 2021 19 / 49

RFS Models: dynamic model

• Denote the set of targets Xt at time t.

• Xt encodes the number of targets, and their positions.

• As xt = f(xt−1, wt) describes how targets propagate in time,

Xt = F (Xt−1) ∪Wt

describes how the RFS Xt evolves over time.

• F yields a RFS, in which each existing target in Xt−1 has been
either been propagated using f (implicitly affected by process
noise), or died.

• Wt is a RFS with targets born at time t.
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RFS Models: measurement model

• Denote the set of measurements, in the scan at time t, Yt.

• The equivalent of yk = h(xk) + ek is

Yk = H(Xk) ∪ Vk

which is the RFS of all measurements procuded at time t.

• H yields a RFS with the measurements are generated from the
targets in Xk using h(x) (implicitly assuming measurement noise).
A measurement is generated from at target with probability Pd,
and all measurements are affected by measurement noise.

• The RFS Vk contains all clutter/false measurements.
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RFS Filtering: Bayesian solution
• With these definitions, its possible to compute

p(Xt|Yt−1) =

∫
p(Xt|Xt−1)p(Xt−1|Yt−1) δXt−1 (TU-RFS)

p(Xt|Yt) =
p(Yt|Xt)p(Xt|Yt−1)

p(Yt|Yt−1)
. (MU-RFS)

where a set integral is needed.
• This filter is computationally prohibitive to implement except few cases.

Important difference

The moments, as heavily used in, e.g., Kalman filter,

((((((((((((((((((((hhhhhhhhhhhhhhhhhhhh

X̂k =

∫
Xkp(Xk|Y0:k)δXk = E(Xk|Y0:k)

is not well-defined! (How are elements with different cardinality combined?)
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Random Finite Set Descriptions: Poisson point process

RFS can be represented in many different ways, which in turn leads to
different approximations, resulting in different filter algorithms.

Poisson Point Process (PPP) RFS

p(X) = e−
∫
λ(x) dxΠx∈Xλ(x)

Typical usage:

• Targets

• Clutter

• Appearing objects

• Measurements from extended targets
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Random Finite Set Descriptions: multi-Bernoulli RFS

RFS can be represented in many different ways, which in turn leads to different filter
approximations.

Bernoulli RFS

p(X) =

{
1− r, X = ∅
rp(x), X = {x}

• It can be shown that cardinality
probability is ρ(0) = 1− r, ρ(1) = r,
and ρ(n > 1) = 0.

Multi-Bernoulli RFS

p({x1, . . . , xn}) =
M∏
j=1

(1 − r
(j)

)
∑

1≤i1 ̸=..., ̸=in≤M

∏ r
(ij)p

(ij)(xj)

1 − r
(ij)

ρ(n) =

M∏
j=1

(1 − r
(j)

)
∑

1≤i1 ̸=..., ̸=in≤M

∏ r
(ij)

1 − r
(ij)

• Union of several independent Bernoulli
RFS.

• pi is the belief function for the
Bernoulli RFSs.

• ρ(n) is the cardinality probability.



Target Tracking Le 8: RFS tracking G. Hendeby, R. Karlsson Dec 15, 2021 24 / 49

Relations Between PPP and MB

Note

• A multi-Bernoulli RFS can be approximated by a Poisson point
process if the existence probabilities are ri < 0.1.

• Any Poisson point process can be approximated by a
multi-Bernoulli RFS, but it may require a large number of
Bernoulli components, N .

A Poisson point process is often less computationally expensive than a
multi-Bernoulli RFS. However, in a Poisson point process both the
mean and the variance of the cardinality is λ, hence the uncertainty
grows with the number of components.
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Probability Hypothesis Density (PHD)

• Suppose Xt = {x(1)t , x
(2)
t , . . . , x

(n)
t }. Define

a scalar valued function from Xt that can
be summed,

hXt(x) =

n∑
i=1

δ
x
(i)
t
(x).

• Then, the probability hypothesis density
(PHD) is the expectation of hXt(x) with
respect to Xt.

PHDt|t(x) = E(hXt(x)|Y0:t)

Targets and Measurements

PHDs

Figures obtained from random set filtering website
http://randomsets.eps.hw.ac.uk/

http://randomsets.eps.hw.ac.uk/


Target Tracking Le 8: RFS tracking G. Hendeby, R. Karlsson Dec 15, 2021 27 / 49

PHD Filter: PHD definition

A usefull definition uses the expected mean of a function (converting
sets to vectors) and with TX∪X′ = TX + TX′ if X ∩X ′ = ∅.

Commonly used:

E[T ] =

∫
TXp(X) δX

where the transformation is the Dirac density, so TX = δX , i.e.,
δX(x) = 0 if X = ∅, otherwise δX(x) =

∑
w∈X δw(x).

This definition yields the probability hypothesis density (PHD)
(intensity function):

D(x) =

∫
δX(x)p(X) δX.
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PHD Filter: assumptions

PHD: Model Assumptions

• Motion model PDF: pt+1|t(x|x′)
• Survival probability for existing targets: pS,t+1|t(x

′)

• Spawning of new targets from existing: bt+1|t(X|x′)
• Appearance of new targets: bt+1(X)

• Probability of detection: pD
• False alarm model (Poission distribution): probability c(x)

• Single target likelihood: L(x) = p(y|x)
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PHD Filter: filter recursion (1/2)

Actions can be formulated as a RFS, where the possibilities are:
survival, spawning of existing target, and spontaneous birth.

Xt =
[ ⋃
x∈Xt−1

pt|t−1(x
′|x)

] ⋃ [ ⋃
x∈Xt−1

bt|t−1(x)
] ⋃

bt

Given this, its possible to derive the filter recursion with a time and
measurement updates.
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PHD Filter: filter recursion (2/2)

The PHD filter recursions

Dt+1|t(x) =

∫
(pS(x

′)pt+1|t(x|x′)︸ ︷︷ ︸
Survival

+ bt+1|t(x|x′)︸ ︷︷ ︸
Spawned

)Dt|t(x
′) dx′ + bt+1(x)︸ ︷︷ ︸

Birth

,

Dt|t(x) = (1− pD(x))Dt|t−1(x) +
∑
y∈Yt

pD(x)p(y|x)Dt|t−1(x)

c(y) +
∫
pD(x′)p(y|x′)Dt|t−1(x′)dx′

.

Note:
The first-order moment density (or intensity) is similar to a PDF, but integrates to the
number of targets instead of 1!
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The GM-PHD Filter

To implement the PHD idea, the inherent exponential
complexity must be handled. One way is to use a Gaussian
sum filter bank with pruning and merging, yielding the
Gaussian mixture PHD (GM-PHD).

• Assume pS and pD are state-independent (to simplify
things).

• Assume that bt+1|t(x|x′) and bt+1(x) are Gaussian
mixtures.

For details see for instance Vo and Ma (2006) or Hendeby and
Karlsson (2014).
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The GM-PHD Filter: example

Illustration of PHD at time: k

550 600 650 700 750 800 850 900 950

400

500

600

700

800

900

Note: The expected mean over the intensity function sums to the number of targets.
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The GM-PHD Filter: example

Illustration of PHD at time: k + 1

550 600 650 700 750 800 850 900 950

400

500

600

700

800

900

Note: The expected mean over the intensity function sums to the number of targets.
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Remarks and Extensions

There exist several approximation/implementation ideas as well as other important issues
for multi-target tracking using PHD:

• Birth at a fixed source (can be relaxed).
• No association, but pruning and mixing.
• There exist other PHD implementations, for instance one based on the particle filter.
• The cardinalized PHD (CPHD):
We want second order approximation, but instead of a full implementation try to
improve upon existing PHD. The CPHD-filter will not fully model the second order
moment but instead it propagates both the intensity Dt|t(x) and the cardinal
distribution pt|t(n). Hence, it propagates the entire probability density for the
number of targets.

• PHD with track labeling.
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Efficient Gaussian Sum Implementations

Given a Gaussian sum assumption of the PHD, this boils down to more
or less a tracking filter where all associations are attempted and then
merged in each time step. (Without considering target identity.)
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PHD Filter Example: Tracking divers

• Example of tracking divers
using sonar.

• Modified GM-PHD to handle
varying pd,

pd(x) = 0.9−4·10−7R2−1.6·10−9R3,

• Fairly high clutter.

• For details:
Hendeby and Karlsson (2014)
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PHD Filter Example
Standard GMPHD filter
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Modified GMPHD filter
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• Probability of detection dies off as a 3rd-degree polynomial, inspired by real data.

https://youtu.be/PJimgDB3X88
https://youtu.be/cAL3ynfVZAk
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Cardinalized Probability Hypothesis Density (CPHD)

• In the PHD filter the number of target are captured by integrating the intensity
function.

• The PHD can be seen as a first order moment filter.

• The CPHD is the equivalent to second order moment.

• CPHD: the cardinality is explicitly estimated in combination with the intensity.
• Motivations: why use CPHD instead of PHD?

The assumption of Poisson target cardinality makes the PHD sensitive to clutter.
“Spooky action at a distance” (Fränken et al., 2009):
Missed measurements shifts the PHD from unrelated areas to detected parts.

The last years other methods are more important, for instance Multi-Bernoulli filters,
and Poisson multi-Bernoulli mixture filters.
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Labeled Multi-Bernoulli Representation

• Bernoulli RFS:

p(X) =

{
1− r X = ∅
rp(x) X = {x}

• Multi-Bernoulli RFS

p({x1, . . . , xn}) =
M∏
j=1

(1− r(j))
∑

1≤i1 ̸=..., ̸=in≤M

∏ r(ij)p(ij)(xj)

1− r(ij)

ρ(n) =
M∏
j=1

(1− r(j))
∑

1≤i1 ̸=..., ̸=in≤M

∏ r(ij)

1− r(ij)

• Labeled Multi-Bernoulli RFS
Add a unique label ℓ to the state, and the RFS becomes
{(r(ℓ), x(ℓ))}ℓ∈L.
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Labeled Multi-Bernoulli: algorithm (1/2)

Time update

p+(X+) =

∫
f(X+)p(X)δX

p+ = {(r(ℓ)+,S , p
(ℓ)
+,S}ℓ∈L

⋃
{(r(ℓ)B , p

(ℓ)
B )}ℓ∈B

where

r+,S = ηS(ℓ)r
(ℓ)

p
(ℓ)
+,S =

∫
pS(ξ, ℓ)f(x|ξ, ℓ)p(ξ|ℓ) dξ

ηS(ℓ)

ηS(ℓ) =

∫
pS(ξ, ℓ)p(ξ|ℓ) dξ

{(r(ℓ)B , p
(ℓ)
B )}ℓ∈B is a birth model.
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Labeled Multi-Bernoulli: algorithm (2/2)

Measurement update

p(·|Z) ≈
⋃N

i=1
{(r(ℓ,i), p(ℓ,i))}

ℓ∈L(i)
+

r(ℓ,i) =
∑

(I+,θ)∈F(L(i)
+ )×ΘI+

ω(I+,θ)(Z(i))1I+(ℓ)

p(ℓ,i)(x) =
1

r(ℓ,i)

∑
(I+,θ)∈F(L(i)

+ )×ΘI+

ω(I+,θ)(Z(i))1I+(ℓ)p
(θ)(x, ℓ|Z(i))

ω(I+,θ)(Z(i)) ∝ ω
(I+)
+,i [η

(θ)

Z(i) ]
I+

=
∏

ℓ∈L(i)
+ −I+

(1− rℓ+)
∏
ℓ′∈Ia+

r
(ℓ′)
+ η

(θ)

Z(i)(ℓ
′)

∏
ℓ′′∈In+

r
(ℓ′′)
+ η

(θ)

Z(i)(ℓ
′′)
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Observation

The labeled Multi-Bernoulli filter is similar to the MHT

• All potential targets can be handled separately, extra book
keeping for existence probabilities etc.

• The δ-generalized labeled multi-Bernoulli (δ −GLMB) filter,
which essentially is a TO-MHT.



Poisson Multi-Bernoulli Mixture
(PMBM) Filter

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Gating Association Track/Hypothesis logicSTT
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Poisson Multi-Bernoulli Mixture (PMBM) Filter

• Relatively new, Williams (2015).

• Can be considered the new state-of-the-art MTT method. (This
can be debated.)

• Has one description of unknown and unobserved targets.

• Has one description of observed targets.

• The PMBM is a conjugate prior, hence suitable as a recursive
filter.
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PMBM: unobserved targets

• Maintain a representation of
unobserved targets.

• “P” in PMBM is a Poisson point
process for unobserved targets.

• Often handled as a Gaussian mixture
PHD, much similar to a GM-PHD filter
but removing detected targets.

• Alternatives to GM-PHD exists, e.g.,
Boström-Rost et al. (2021).
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https://youtu.be/e0ebz08vgTo
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PMBM: observed targets

• Observed targets are extracted from
the unobserved PPP and handled
separately.

• “MBM” in PMBM is a multi-Bernoulli
mixture for observed targets.

• Basically a δ-generalized LMB
(δ-GLMB)filter, which is a type of
LMB with preferable properties.

• Can be efficiently implemented using a
TO-MHT.
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Target Tracking Le 8: RFS tracking G. Hendeby, R. Karlsson Dec 15, 2021 46 / 49

PMBM: observed targets

• Observed targets are extracted from
the unobserved PPP and handled
separately.

• “MBM” in PMBM is a multi-Bernoulli
mixture for observed targets.

• Basically a δ-generalized LMB
(δ-GLMB)filter, which is a type of
LMB with preferable properties.

• Can be efficiently implemented using a
TO-MHT.

h
t
t
p
s
:
/
/
y
o
u
t
u
.
b
e
/
H
X
4
-
y
C
2
K
B
4

https://youtu.be/HX4-yC2KB4


Target Tracking Le 8: RFS tracking G. Hendeby, R. Karlsson Dec 15, 2021 47 / 49

PMBM Algorithm

• Conceptually:

Run a PHD filter too keep track of unobserved targets.
Run a TO-MHT too keep track of observed targets.
When an unobserved target is observed, remove it from PHD filter,
and insert into the MHT again.
Weights are update to make this correct.

• For details see, e.g., Williams (2015); Garćıa-Fernández et al.
(2018)
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Summary

• Random finite set (RFS) represents a “new” view of target
tracking, but are mostly very similar to classic methods.

• Many different approximations, resulting in different filters:

Probability hypothesis distribution (PHD) filter
Multi-Bernoulli distribution filters
Poisson multi-Bernoulli mixture (PMBM) filter

• Utilize a random set formulation to include the full MTT problem
in a single mathematical formulation.
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Course Summary

• Focus on classic multi-target tracking problems, with outlooks to
common extensions and the RFS formulation.

• Examination (how many intend to get credits?):

Exam, 2 ETCS credits:
Take home exam, 1 h exam. Tests the understanding of the
principles discussed in the course.

Due: End of January (contact us to schedule the exam).
Exercises, 4 ETCS credits:
Show hands on experience of important discussed methods.

Due: December 19, 2021
Project, 3 ETCS credits:
More advanced utilization of MTT techniques, preferably related to
your research.

Discuss details with us.
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