Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking

Gustaf Hendeby and Rickard Karlsson

Div. Automatic Control Dept. Electrical Engineering gustaf.hendeby@liu.se, rickard.g.karlsson@liu.se

1 Multi-Hypothesis Tracking 2 Conceptual MHT 3 Hypothesis-Oriented MHT 4 Track-Oriented MHT 5 Practicalities 6 Summary 7 Exercises

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking G. Hendeby, R. Karlsson October 22, 2021 2/45 Summary: lecture 4 Senso ciation + STT + Track/ Gating Extended previous methods to several targets. Methods for gating, clustering, and association were presented, yielding the validation and association matrix. • SHT: One measurement association hypothesis is used ■ GNN: A hard decision; choose the most likely association hypothesis. The association problem can be solved with many of-the-shelf algorithms, e.g., auction, after constructing the association (cost) matrix. JPDA: A soft decision; marginalize all possible associations. How to combine the possible measurements depends on the association matrix.

October 22, 2021

6/45

- MHT: consider multiple associations hypotheses over time, *i.e.*, difficult decisions are postponed until more data is available.
- MHT took off with the seminal paper (Reid, 1979).
- There were MHT solutions before Reid's, but not as efficient.
- Integrated track initialization.
- Two principal implementations:
 - Hypotheses-oriented (HO-MHT)
 - Track-oriented (TO-MHT)
- TO-MHT was at some point considered more efficient, but HO-MHT can now be quite efficiently implemented too.

8 / 45

Conceptual MHT: basic idea

Idea

Generate all possible hypotheses, and then prune to avoid combinatorial hypotheses growth.

- Described by Reid (1979).
- Intuitive hypothesis based *brute force* implementation.
- Between consecutive time instants, different association hypotheses are kept in memory.
- Hypothesis limiting techniques:
 - Prune low probability hypotheses.
 - N-scan pruning.

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking

- Merge similar hypotheses.
- Ensures measurement-track consistency!

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking

• Reid (1979): list with hypothesis.

G. Hendeby, R. Karlsson

- One target generates only at most one measurement.
- Gating to remove unlikely combinations.
- Clustering could be used to split the problem in simpler ones.

October 22, 2021

9/45

- Example:
 - Two prior tracks (1 and 2)
 - Three new tracks (3,4, and 5)
 - Measurements denoted 11, 12, 13.
 - Alg: Measurement loop outside hypothesis loop

Hypothesis Probabilities (from last lecture on SHT)

Consider association hypotesis θ_t in measurement scan Y_t .

$$p(\theta_t|Y_t) \propto (\beta_{\rm FA})^{m_t^{\rm FA}} (\beta_{\rm NT})^{m_t^{\rm TA}} \Big[\prod_{j \in \mathcal{J}} P_{\rm D} p_{t|t-1}^{(j)} (y_t^{(\theta_t^{-1}(j))}) \Big] \Big[\prod_{j \in \bar{\mathcal{J}}} (1 - P_{\rm D} P_{\rm G}) \Big]$$

G. Hendeby, R. Karlsson

October 22, 2021

10 / 45

where

- Measurement to track association at time t: θ_t
- \mathcal{J} is the set of indices of detected tracks (assigned).
- $\overline{\mathcal{J}}$ is the set of indices of non-detected tracks (not assigned).
- $\theta_t^{-1}(j)$ is the index of the measurement that is assigned to track $j \in \mathcal{J}$. $(\theta_t^{-1}(j) = \emptyset$ is shorthand for no measurement associated with track j.)
- All but the last factors are associated with a measurement.

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking	G. Hendeby, R. Karlsson	October 22, 2021	11 / 45
Extended Notation to Handle MHT			
• One measurement sequence: y	$y_{1:t} = \{y_1, y_2, \dots, y_t\}.$		
• Measurements in a scan: $Y_t =$	$\{y_t^{(1)}, y_t^{(2)}, \dots, y_t^{(m_t)}\}$		
• $Y_{1:t} = \{Y_1, Y_2, \dots, Y_t\}$			
 The set of measurement to tra 	ick association at time	t: θ_t	
• Hypothesis i at time t : $ heta_t^{(i)}$.			
• $ heta_{1:t}$ is the history of measurem	ent to track association	IS.	
 Between consecutive time instance hypotheses, {θ⁽ⁱ⁾_{1:t-1}}_{i=1N_h}, and θ^(ij)_{1:t} = (θ⁽ⁱ⁾_{1:t-1}, θ^(j)_t) 	ants, N_h different assoc e kept in memory.	iation	

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking G. Hendeby, R. Karlsson October 22, 2021 13/45
Hypothesis Probabilities
Now, let
$$\theta_{1:t}^{(ij)} = \{\theta_{1:t-1}^{(i)}, \theta_t^{(j)}\}$$
, then applying Baye's rule and $Y_{1:t} = \{Y_t, Y_{1:t-1}\}$
 $p(\theta_{1:t}^{(ij)}|Y_{1:t}) \propto p(Y_t|\theta_{1:t}^{(ij)}, Y_{1:t-1})p(\theta_{1:t}^{(ij)}|Y_{1:t-1})$
 $\propto p(Y_t|\theta_{1:t}^{(ij)}, Y_{1:t-1})p(\theta_t^{(j)}|\theta_{1:t-1}^{(i)}, Y_{1:t-1})p(\theta_{1:t-1}^{(i)}|Y_{1:t-1})$
 $\propto \beta_{FA}^{m_t^{FA}} \beta_{NT}^{m_t^{NT}} \bigg[\prod_{k \in \mathcal{J}^{(j)}} P_D p_{t|t-1}^{(k)}(y_t^{((\theta_t^{(j)})^{-1}(k))})\bigg] \bigg[\prod_{k \in \bar{\mathcal{J}}^{(j)}} (1 - P_D P_G)\bigg] p(\theta_{1:t-1}^{(i)}|Y_{1:t-1})$
Hence, existing hypotheses probability is updated using the fundamental tracking

formula. Note

The sets $\mathcal{J}^{(j)}$ and $\overline{\mathcal{J}}^{(j)}$ depend on $\theta_{1:t-1}^{(i)}$! The number of targets and target estimates usually differ between hypotheses.

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking	G. Hendeby, R. Karlsson	October 22, 2021	15 / 45
Complexity Reduction: pruning			
• Delete hypotheses with low probabil Delete hypotheses with probability belo	lity w a threshold, γ_p (e.g.,	$\gamma_p = 0.1 \%$):	
Deletion Condition: $p(heta_{1:t}^{(i)}) < \gamma_p$			
 Keep only the most probable hypotl Keep the most probable hypotheses tha probability mass, γ_c (e.g., γ_c = 99 %): 	heses It together make up end	ough of the total	
Deletion Condition: $i > i$	$i_{th} = \arg\min_{i} \sum_{k=1}^{i} p(\theta_{1:t}^{(k)})$	$) \geq \gamma_c,$	
where $ heta_{1:t}^{(k)}$ has been ordered such that j	$p(\theta_{1:t}^{(k)}) \ge p(\theta_{1:t}^{(k+1)}).$		

Make sure to renormalize the hypothesis probabilities after pruning.

• Reduce the number of hypothesis to make the algorithms manageable.

G. Hendeby, R. Karlsson October 22, 2021

20 / 45

Conceptual MHT: summary

- Attractive method since each hypothesis is:
 - \blacksquare an alternative representation of reality
 - easily interpreted
- Drawback: generating all possible hypotheses only to discarding (most of) them is inefficient.
- Some hypotheses contain the same track; hence fewer unique tracks than hypotheses.

Extensions of the original MHT idea

HO-MHT More clever/efficient hypotheses generation: Cox and Miller (1995).

TO-MHT Track-oriented hypothesis handling.

Hypothesis-Oriented Multiple-Hypothesis Tracker

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking	G. Hendeby, R. Karlsson	October 22, 2021	22 / 4
Hypothesis-Based MHT			
 Proposed by Cox and Miller (1995).		
 Only generate the best hypot anyhow be deleted. 	heses, ignore hypotheses	s that will	
 Propagate the N_h-best hypot 	heses:		
 Generating as few unnecess Use the k-best algorithm to problem (Murty's alg). 	sary hypothesis as possible o find solutions to the assi	gnment	
 Regular hypothesis reduction 	techniques still apply.		

October 22, 2021

25/45

Target Tracking Le 5: Multi-Target Tracking: multi-hypo	thesis tracking	G. Hendeby, R. Kansson	OCIODEF 22, 2021	30 / 43
Track Scores and Hypothe	eses Proba	abilities		
From Lecture 3:				
$\mathcal{H}_0:$	\mathbb{Y}_t all origin	nate from FA		
\mathcal{H}_1 :	\mathbb{Y}_t originate	e from a single target		
The track score is the matchin	g log probab	ility ratio		
	$L_t = \log$	$\frac{\Pr(\mathcal{H}_1 \mathbb{Y}_t)}{\Pr(\mathcal{H}_0 \mathbb{Y}_t)}$		
The probabilities of a track car	n be obtaine	d from the track score		
	$\Pr(\mathcal{H}_1 \mathbb{Y}_t$	$)=\frac{e^{L_t}}{1+e^{L_t}},$		
How do we do this for the MH	T?			

C Handahu B Karleson

Ostahar 22, 2021

20 / 45

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking G. Hendeby, R. Karlsson October 22, 2021 31 / 45 MHT: Track Scores and Hypotheses Probabilities $y_{t+1}^{(5)}T_{t+1}^{(15)}$ • Track probability: $T^{(17)}$ $P(T_t^{(i)}) = \sum_{T_t^{(i)} \in \theta_{1:t}^{(j)}} P(\theta_{1:t}^{(j)})$ $T_{t+1}^{(1\emptyset)}$ $y^{(3)}_{t+1}T^{(33)}_{t+1}$ • Hypothesis score: $\operatorname{Sc}(\boldsymbol{\theta}_{1:t}^{(i)}) = \sum_{T_t^{(j)} \in \boldsymbol{\theta}_{1:t}^i} \operatorname{Sc}(T_t^{(j)})$ L_{t+1} $y^{(3)}T^{(30)}_{t+1}$ • Hypothesis probability: t+1 $P(\theta_{1:t}^{(i)}) = \frac{\exp\left(\operatorname{Sc}(\theta_{1:t}^{(i)})\right)}{1 + \sum_{i} \exp\left(\operatorname{Sc}(\theta_{1:t}^{(j)})\right)}$ $y^{(5)}$

Taurat Tracking La E. Multi Taurat Tracking, multi hunathasis tracking

G. Hendeby, R. Karlsson October 22, 2021 36 / 45

Examples of Two Tracking Frameworks

Frameworks to simplify prototyping target tracking solutions exist. Two that are well aligned with how the material is presented in this course are:

- Sensor Fusion and Tracking Toolbox in MATLAB
- Stone Soup (Python)

Both frameworks provides the ability to rather quickly prototype and experiment with tracking solutions, but should probably not be used in production code where speed is of essence.

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis trackingG. Hendeby, R. KarlssonOctober 22, 202137 / 45Tracking Frameworks: Sensor Fusion and Tracking Toolbox in MATLAB

• An official MATLAB toolbox.

- Contains a fairly complete implementation of tracking methods. The toolbox also contains sensor fusion components often found in tracking applications, *e.g., inertial navigation systems* (INS), as well as IMM, JPDA, TO-MHT,
- https://www.mathworks.com/products/ sensor-fusion-and-tracking.html

38 / 45

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking
G. Hendeby, R. Karlsson
October 22, 2021
Stone Soup (Python)
An open source tracking framework in Python.
Development lead by *Defence Science and Technology Laboratory* (DSTL), the UK, i collaboration with similar institutions around the world.
Still in beta.
Will include sensor management and similar components to be able to evaluate complete tracking solutions.

- https://stonesoup.readthedocs.io
- Examples (live).

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking	G. Hendeby, R. Karlsson	October 22, 2021	39 / 45
User Presentation Logic			
C			
• Maximum probability hypothesis: simp	lest alternative.		
Possibly jumpy; the maximum probab	oility hypothesis can chang	ge erratically.	
 Show track clusters: (weighted) mean, 	covariance and expecte	ed number of targ	ets.
 Keep a separate track list: update at e different hypotheses. 	ach step with a selectio	n of tracks from	
 Consult (Blackman and Popoli, 1999) 	for details.		

Target Tracking Le 5: Multi-Target Tracking: multi-hypothesis tracking

G. Hendeby, R. Karlsson October 22, 2021

40 / 45

Which MTT Method to Use?

SNR	Low	Medium	High
Low	Group TT / PHD	GNN	GNN
Medium	MHT	GNN or JPDA	GNN
High	TrBD / MHT	MHT	Any

- GNN and JPDA are very bad in low SNR.
- When using GNN, one generally has to enlarge the overconfident covariances to account for neglected data association uncertainty.
- JPDA has track coalescence and should not be used with closely spaced targets, see the "coalescence avoiding" versions.
- MHT requires significantly higher computational load but it is said to be able to work reasonably under 10–100 times worse SNR.

