Target Tracking Le 2: Models in Target Tracking

Gustaf Hendeby and Rickard Karlsson

Div. Automatic Control Dept. Electrical Engineering gustaf.hendeby@liu.se, rickard.g.karlsson@liu.se

- 1 Overview: Models and Measurements
- 2 Measurements and Measurement Models
- 3 Target Dynamics and Motion Models
- 4 Filter Banks
- 5 Summary

2/53

Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021
Summary: lecture 1		
[[Sensor	
→Detection→Gat	$ ing \rightarrow Association \rightarrow \boxed{STT} Track $	/Hypothesis logic

- Multi-target tracking is the problem of decide how many targets are present and how they move, given measurements with imperfections.
- Classic MTT can be divided in several stages: gating, association, single target tracking, track/hypothesis logic, and presentation.
- Single target tracking: Kalman type filters, particle filters

Target Tracking Le 2: Models in Target Tracking

G. Hendeby, R. Karlsson

September 17, 2021 4 / 53

Overview: models in target tracking

Models

• Consider a model of the target state x_t with (target) input u_t .

 $x_{t+1} = f(x_t, u_t)$ $y_t = h(x_t) + e_t$

- The input signal, u_t , is unknown (pilot maneuver, external influences, etc)
- We need to replace it with a random noise
- All models are approximations, that might be of high or low fidelity

Hence, one way to model this is to introduce process noise w_t . The measurement noise, e_t , is basically given by the sensor!

Today: common models and maneuvering filters.

Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021	6 / 53	Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021	7 / 53
Measurements				Measurement Scan			
Measurement Source	'S						
Previously observedNew targetsClutter (false alarn	d targets ns/detections/observations	s)		In many applications da For example a scanning measurements for one r	ta is received during some tim radar (<i>e.g.</i> , $f = 1$ Hz) receive evolution once the full revoluti	e period, a <mark>scan</mark> . s all on is finished.	
 Kinematic measurements Position (pixel indices) Range Range rate (radar Doppler shift) Bearing 	Attribute measurer • Signal strength • Intensity • Aspect ratio • Target type	nents		Typically, if the targets performed assuming all the same time.	do not move too fast, tracking the measurements in one scan	; can be are obtained at	
Ma will only talk show	ut kinomotia maaaurama						

10/53

- The measurement model provides information about:
 - 1. the detection probability, $P_{\rm D}$;
 - 2. the measured value, y_t .
- Probability of detection:
 - $\blacksquare~P_{\rm D}<1$ in many sensors, imperfect sensors.
 - Detection probability *P*_D can be a characteristics of the sensor/algorithm as well as the target state. *P*_D might depend on the specific target position and it can vary from target to target.
 - \blacksquare It is generally difficult to find an exact formula for $P_{\rm D},$ approximations and heuristics are needed.
- Sensor measurement noise, e_t .

Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021	11 / 53
Example of Sensor Model: radar	(1/2)		
The <i>radar</i> sensor is probably the most used Today, the automotive industry is a driving	sensor for ATC and targe force. A common measu	et tracking applications. rement relation:	
$\begin{pmatrix} \varphi \\ \varphi \end{pmatrix}$	$\begin{pmatrix} \operatorname{atan2}(y/x) \\ \operatorname{atan2}(z/\sqrt{x^2+y}) \end{pmatrix}$	$\overline{(2)}$	

$$y = h(x) + e = \begin{pmatrix} \varphi \\ \theta \\ r \\ \dot{r} \end{pmatrix} + e = \begin{pmatrix} \operatorname{atan2}(z/\sqrt{x^2 + y^2}) \\ \sqrt{x^2 + y^2 + z^2} \\ \frac{xu^x + yu^y + zu^z}{\sqrt{x^2 + y^2 + y^2}} \end{pmatrix} + e$$

where φ is the azimuth angle, θ is the elevation, r is the range and \dot{r} is the range rate (derived from the Doppler shift).

The radar equation also gives:

$${\sf SNR} \propto rac{\sigma_{\sf rcs}}{r^4},$$

where $\sigma_{\rm rcs}$ denotes the *radar cross section* (RCS). Different statistical assumptions (Swerling-cases) are used to model its PDF.

Target Tracking Le 2: Models in Target Tracking G. Hendeby, R. Karlsson September 17, 2021 15 / 53 Measurement Model: clutter (motivation for finite resolution sensors) Consider a sensor with finite resolution of N cells, with probability of false alarm p in each cell: $P_{\rm FA}(m_t^{\rm FA}) = \binom{N}{m_t^{\rm FA}} p^{m_t^{\rm FA}} (1-p)^{N-m_t^{\rm FA}}.$ Binomial \rightarrow Poisson distribution approximation In the limit as $N \to +\infty$ and $p \ll 1$, the binomial distribution becomes a Poisson distribution,

$$\binom{N}{m} p^m (1-p)^{N-m} \to \frac{\lambda^m e^{-\lambda}}{m!},$$

where $\lambda = Np$.

In the clutter setting, with many cells, $N \gg 1$, and low probability of false alarm, $p \ll 1$,

$$P_{\rm FA}(m_t^{\rm FA}) \approx \frac{(Np)^{m_t^{\rm FA}}e^{-Np}}{m_t^{\rm FA}!} = \frac{(\beta_{\rm FA}V)^{m_t^{\rm FA}}e^{-\beta_{\rm FA}V}}{m_t^{\rm FA}!},$$

where Np and $\beta_{\rm FA}V$ both represent the expected number of FA in the tracking volume.

Measurement Model: clutter

Target Tracking Le 2: Models in Target Tracking

Non-persistent measurements which do not originate from a target.

- Prior information is important.
 - Clutter maps (eg, from specification or experiments).
 - Sensor (processing algorithm) characteristics
 - Sometimes provided by the manufacturer.
 - Experiments if necessary.
- The case of minimal prior info
 - Number of false alarms (FA), m_t^{FA} , in a region of volume V: Poisson distributed with clutter rate β_{FA} (FA intensity per scan).

$$P_{ ext{FA}}(m_t^{ ext{FA}}) = rac{(eta_{ ext{FA}}V)^{m_t^{ ext{FA}}}e^{-eta_{ ext{FA}}V}}{m_t^{ ext{FA}}!}$$

G. Hendeby, R. Karlsson

 $P_{\rm D}$ for the clutter is included in $P_{\rm FA}$.

• Spatial FA distribution: Uniform in the tracking volume V,

$$p_{\mathrm{FA}}(y_t) = rac{1}{V}$$

September 17, 2021 13/53

Example Sensor Model: camera

• The relation between pixels coordinates (p frame) and normalized image coordinates (*n* frame) is given by standard calibration methods. Hence, usually, $y = m_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

G. Hendeby, R. Karlsson

- Cameras are often modeled using the simple pin-hole camera model.
- To relate the object position to the measurement, project the point in the world, $m_c = \begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix}$, onto the image plane to get m_n ,

 $h(x) = m_n = \begin{pmatrix} \mathsf{x}_n \\ \mathsf{y}_n \end{pmatrix} = \frac{f}{\mathsf{z}_c} \begin{pmatrix} \mathsf{x}_c \\ \mathsf{y}_c \end{pmatrix}.$

September 17, 2021

14/53

Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021 19 / 53
Target Motion Models: coord	dinated turn $(1/2)$	
 (Nearly) coordinated turn (CT) constant speed, constant turn ra State with Cartesian velocity x_t 	model, <i>i.e.</i> , nearly the model = $\begin{pmatrix} x_t & y_t & v_t^{x} & v_t^{y} & \omega_t \end{pmatrix}^T$	
Continuous time description		$y \uparrow (v^x) \uparrow $
$\dot{x} = v\cos(h)$	$\dot{y} = v\sin(h),$	(v^{y}) (v^{y}) (v^{y}) (v^{y}) (v^{y})
from which the following differential $\ddot{\mathbf{x}} = \frac{d}{dt} \dot{\mathbf{x}} = -v\dot{h}\sin(h)$ $\ddot{\mathbf{y}} = \frac{d}{dt}\dot{\mathbf{y}} = -v\dot{h}\cos(h)$	equations are obtained $() = -\omega \dot{y}$ $(\omega) = \omega \dot{x}$.	Coordinated turn

Target Tracking Le 2: Models in Target Tracking G. Hendeby, R. Karlsson (2/2)
Continuous to Discrete Time Models (2/2)
Nonlinear state-space model (two options):
Continuous time Discrete time

$$\dot{x} = a(x, u)$$
 $x_{t+1} = f(x_t, u_t)$
 $y = c(x, u)$ $y_t = h(x_t, u_t)$
1. Discretized linearization (general):
a. Linearize:
 $A = \nabla_x a(x, u)$ $B = \nabla_u a(x, u)$ $C = \nabla_x c(x, u)$ $D = \nabla_u c(x, u)$
b. Discretize (sample): $F = e^{AT}$, $G = \int_0^T e^{A\tau} d\tau B$, $H = C$, and $J = D$
2. Linearized discretization (best, if possible!):
a. Discretize (sample nonlinear):
 $x(t + T) = f(x(t), u(t)) = x(t) + \int_t^{t+T} a(x(\tau), u(\tau)) d\tau$
b. Linearize: $F = \nabla_x f(x_t, u_t)$ and $G = \nabla_u f(x_t, u_t)$

Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021	23 / 53
Singer Acceleration Model			
Consider position, velocity and accele	eration as states. Assume some r	nemory in the acceleration	:
$\frac{d}{dt}$	$\frac{1}{2}\ddot{X}(t) = -\alpha\ddot{X}(t) + w(t),$		
where $w(t)$ is the driving white noise.			
$\dot{x}(t) = \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \underbrace{ 0 & 0 & -\alpha \\ A \end{pmatrix}}_{A} x(t) + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} w(t).$		
Discretizing the system matrix assum	ing sample time T yields,		
$F = e^{AT} = \begin{pmatrix} 1 & T & \frac{1}{\alpha^2} (e^{-1}) \\ 0 & 1 & \frac{1}{\alpha} \\ 0 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 1 & T & T \\ (1 - e^{-\alpha T}) \\ e^{-\alpha T} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & T & \frac{T^4}{2} \\ 0 & 1 & T \\ 0 & 0 & 1 \end{pmatrix} $	$\left(\frac{r^2}{r} \right)$, when $\alpha T \rightarrow 0$,	
which is the constant acceleration mo	odel.		

G. Hendeby, R. Karlsson

September 17, 2021 24 / 53

Process Noise Modeling

There are many ways to model discrete process noise given a continous model. See SF-course for more examples. Here we focus on:

$$\dot{x}(t) = a(x(t)) + w(t), \qquad \operatorname{cov}(w(t)) = \tilde{Q},$$

$$x_{t+T} = f(x_t) + w_t, \qquad \operatorname{cov}(w_t) = Q.$$

Let $f_x = \nabla_x f(x)|_{x=\hat{x}}$.

These methods correspond to more or less *ad hoc* assumptions on the process noise:

• w(t) is white noise whose total influence during one sample interval,

 $Q = T\tilde{Q}.$

• w(t) is a discrete white noise sequence with variance $T\tilde{Q}$. All maneuvers occur immediately after a sample time, $x_{t+1} = f(x_t + w_t)$,

 $Q = T f_x \tilde{Q} f_x^T.$

Models Combining Several Behaviors

Jump Markov State-Space Model (JMSSM)

 $\begin{aligned} x_t &= f(x_{t-1}, \delta_t) + w_t(\delta_t) \\ y_t &= h(x_t, \delta_t) + e_t(\delta_t) \\ \delta_t | \delta_{t-1} \sim p(\delta_t | \delta_{t-1}) \end{aligned}$

G. Hendeby, R. Karlsson

where δ_t is a discrete valued Markov process, typically given by the transition matrix Π $(\Pi^{\delta_{t-1}\delta_t} = \Pr(\delta_t | \delta_{t-1}))$, to indicate the current mode of the model/target.

- A target has well-defined modes.
- A target exhibit different types of behavior; *e.g.*, mixing no maneuvers and agile

September 17, 2021

29 / 53

Target Tracking Le 2: Models in Target Tracking

G. Hendeby, R. Karlsson

September 17, 2021 36 / 53

GPB Filtering: illustration

Generalized Psuedo Bayesian (GPB(1)) filtering

KF-filter bank hypotheses are merged to a single mode after each measurement update.

arget Tracking Le 2: Models in Target Tracking G. Hendeby, R. Karlsson September 17, 2021 37/53
Multiple Models: GPB(1) derivation (1/2)
Assume the following prior:

$$p(x_{t-1}|\mathbb{Y}_{t-1}) = \mathcal{N}(x_{t-1}; \hat{x}_{t-1|t-1}, P_{t-1|t-1})$$

Then the posterior can be computed according to

$$p(x_t|\mathbb{Y}_t) = \sum_{\delta_t} p(x_t|\delta_t, \mathbb{Y}_t) \operatorname{Pr}(\delta_t|\mathbb{Y}_t)$$
$$= \sum_{\delta_t} \omega_t^{(\delta_t)} p(x_t|\delta_t, y_t, \hat{x}_{t-1|t-1}, P_{t-1|t-1})$$
$$\approx \sum_{\delta_t} \omega_t^{(\delta_t)} \mathcal{N}(x_t; \hat{x}_{t|t}^{(\delta_t)}, P_{t|t}^{(\delta_t)})$$
$$\approx \mathcal{N}(x_t; \hat{x}_{t|t}, P_{t|t})$$

40 / 53

Multiple Models: GPB(2) derivation (1/3)

Assume the following prior:

$$p(x_{t-1}|\mathbb{Y}_{t-1}) = \sum_{\delta_{t-1}} \omega_{t-1}^{(\delta_{t-1})} \mathcal{N}(x_{t-1}; \hat{x}_{t-1|t-1}^{(\delta_{t-1})}, P_{t-1|t-1}^{(\delta_{t-1})})$$

G. Hendeby, R. Ka

Then the posterior can be computed according to

$$p(x_t | \mathbb{Y}_t) = \sum_{\delta_t, \delta_{t-1}} p(x_t | \delta_t, \delta_{t-1}, \mathbb{Y}_t) p(\delta_{t-1} | \delta_t, \mathbb{Y}_t) p(\delta_t | \mathbb{Y}_t)$$

Where the first term is the filter estimate assuming the mode sequence $\delta_{t-1}\delta_t$:

$$p(x_t|\delta_t, \delta_{t-1}, \mathbb{Y}_t) = \mathcal{N}(x_t; \hat{x}_{t|t}^{(\delta_{t-1}\delta_t)}, P_{t|t}^{(\delta_{t-1}\delta_t)})$$

Note the two terms canceling when the two terms are multiplied.

Target Tracking Le 2: Models in Target Tracking G. Hendeby, R. Karlsson
Multiple Models: derivations IMM
$$(1/2)$$

Total probability theorem:

$$p(x_t|\mathbb{Y}_t) = \sum_{\delta_t} p(x_t|\delta_t, \mathbb{Y}_t) p(\delta_t|\mathbb{Y}_t) = \sum_{\delta_t} p(x_t|\delta_t, y_t, \mathbb{Y}_{t-1}) \omega_t^{(\delta_t)}$$

September 17, 2021

44 / 53

Baye's rule:

$$p(x_t|\delta_t, y_t, \mathbb{Y}_{t-1}) = \frac{p(y_t|\delta_t, x_t)p(x_t|\delta_t, \mathbb{Y}_{t-1})}{p(y_t|\delta_t, \mathbb{Y}_{t-1})}$$

$$\begin{aligned} & \text{Target Tracking Le 2: Models in Target Tracking}} & \text{G. Hendeby, R. Karlsson} & \text{September 17, 2021} & 45/53 \end{aligned}$$

Target Tracking Le 2: Models in Target Tracking
 G. Hendeby, R. Karlsson
 September 17, 2021
 46/53

 Multiple Models: IMM algorithm
 (1/2)

 • Calculate mixing probabilities:

$$\mu_{t-1}^{\delta_{t-1}|\delta_t} \propto \Pi^{\delta_{t-1}\delta_t} \omega_{t-1}^{(\delta_{t-1})}, \quad \sum_{\delta_{t-1}} \mu_{t-1}^{\delta_{t-1}|\delta_t} = 1$$

 • Mixing: Start with $\hat{x}_{t-1|t-1}^{(\delta_{t-1})}$ and $P_{t-1|t-1}^{(\delta_{t-1})}$.

 $\hat{x}_{t-1|t-1}^{(0\delta_t)} = \sum_{\delta_{t-1}} \mu_{t-1}^{\delta_{t-1}|\delta_t} \hat{x}_{t-1|t-1}^{(\delta_{t-1})}$
 $P_{t-1|t-1}^{(0\delta_t)} = \sum_{\delta_{t-1}} \mu_{t-1}^{\delta_{t-1}|\delta_t} (P_{t-1|t-1}^{(\delta_{t-1})} + (\hat{x}_{t-1|t-1}^{(\delta_{t-1})} - \hat{x}_{t-1|t-1}^{(0\delta_t)})(\hat{x}_{t-1|t-1}^{(\delta_{t-1})} - \hat{x}_{t-1|t-1}^{(0\delta_t)})^T)$

Target Tracking Le 2: Models in Target Tracking	G. Hendeby, R. Karlsson	September 17, 2021	47 / 53
Multiple Models: IMM algori	ithm (2/2)		
• Mode-matched filtering:			
$\Lambda_t^{(\delta_t)}$	$= p(y_t \delta_t, \hat{x}_{t-1 t-1}^{(0\delta_t)}, P_{t-1 t-1}^{(0\delta_t)})$).	
$\begin{array}{l} Update \; (\hat{x}_{t-1 t-1}^{(0\delta_t)}, P_{t-1 t-1}^{(0\delta_t)}) \; w \\ (\hat{x}_{t t}^{(\delta_t)}, P_{t t}^{(\delta_t)}). \end{array}$	with the measurement y_t to o	btain the new filter mo	odes
• Mode probability update:			
$\omega_t^{(\delta)}$	$(\delta_t) \propto \Lambda_t^{(\delta_t)} \sum_{\delta_{t-1}} \Pi^{\delta_{t-1}\delta_t} \omega_{t-1}^{(\delta_{t-1})}$		

Target Tracking Le 2: Models in Target Tracking

G. Hendeby, R. Karlsson

September 17, 2021 48 / 53

IMM Filter Illustration I

A radar tracking application is presented using a two filter IMM filter. One filter is used to handle a straight paths, whereas the other is used to manage maneuvers. Due to the nonlinearities in the measurement equation an EKF is used for the estimation.

