Target Tracking Le 1: Introduction

Gustaf Hendeby

Div. Automatic Control Dept. Electrical Engineering gustaf.hendeby@liu.se

- 1 Course Information
- 2 Multi-Target Tracking Overview
- 3 Examples
- 4 Problem Formulation
- 5 Summary

Course Information

Multi-Target Tracking Course, Fall 2025

Aim

The aim of the course is to provide an introduction to multi-target tracking (MTT); both theoretical and practical aspects. After the course a student should be able to explain the basic ideas underlying MTT and feel confident to implement the fundamental methods.

Course activities:

- 7 (8?) lectures where the theoretical aspects of MTT are explained.
- 1 lecture/seminar on ethical aspects.
- 1 guest lecture: Per Boström-Rost, Saab Aeronautics.
- 1 ethical aspects lecture
- Practical coding exercises, performed on your own.

Responsible:

Gustaf Hendeby (gustaf.hendeby@liu.se)

Course homepage:

• https://mtt.edu.hendeby.se

Course Content

- Single-target tracking (STT)
- Motion and sensor models:
 - Common tracking models
 - Maneuvering targets (IMM)
 - Clutter
- Multi-target tracking (MTT):
 - Association
 - Track logic
 - Global Nearest Neighbor (GNN) Tracker
 - Multi-Hypotheses Tracker (MHT)

- Outlook, modern methods:
 - Track before detect (TkBD)
 - RFS/FISST:
 - Probability hypothesis density (PHD)
 - Multi-Bernoulli
 - Poisson multi-Bernoulli mixture (PMBM)
 - Track-to-track fusion (T2TF)
- Ethical considerations

Course Examination

Three independent parts with different focuses:

- 1. Basic theory and understanding: exam (2 ETCS credits)

 Theory is examined in a brief written exam.
- 2. Implementation and practice: exercises (4 ETCS credits)

 Implementation skill and practical knowhow are examined using assignments during the course.
- 3. Research related work: project (3 ETCS credits)

 Use course skills extensions on the topic for a larger tracking project, preferably related to your research. Individually or in a group of two.

Course Prerequisites

Familiarity with:

- Basic probability theory
- State-space models
- Bayesian estimation methods
 - Kalman filter (KF)
 - Extended Kalman filter (EKF)
 - Unscented Kalman filter (UKF)
 - Particle filter (PF)
- Coding in MATLAB or similar (for the exercises)

Suitable background material

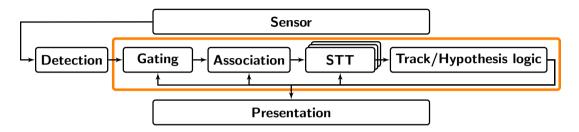
- Sensor Fusion course (TSRT14): http://www.control.isy.liu.se/student/tsrt14
- Selected sensor fusion videos: https://mtt.edu.hendeby.se/prerequisite.html
- F. Gustafsson, L. Ljung, and M. Millnert. Signal processing. Studentlitteratur, 1. edition, 2010.
- F. Gustafsson. *Statistical Sensorfusion*. Studentlitteratur, 3. edition, 2018.
- T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice-Hall, Inc, 2000. ISBN 0-13-022464-2.
- S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory, volume 1. Prentice-Hall, Inc, 1993. ISBN 0-13-042268-1.

Lecture Schedule (preliminary)

Le	Topic	Date		Ex
1	Introduction	Sept 16	15–16	
1b	Preliminaries	Sept 16	16-17	
2	Models for Target tracking	Sept 19	13 - 15	
3	Single target tracking	Sept 25	15 - 17	Ex 1
4	Multi-target tracking $(1/2)$: GNN, JPDA	Oct 16	13-15	Ex 2
5	Multi-target tracking (2/2): MHT	Fall		Ex 3
6	Random Finite Sets: PHD, etc	Fall		
6b?	Random Finite Sets: PHD, etc part 2	Fall		
7	Guest lecture	Fall		
8	Various topics (TkBD, T2T, ETT)	Fall		
9	Ethical aspects	Fall		

- Lectures are in Large conference room in Visionen, unless otherwise stated.
- Exercises are due at the end of the course.
 (Doing them as the course progresses is highly recommended!)
- Dates are preliminary, check homepage and e-mail for updates.

Course Literature

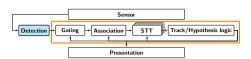

- Selected papers handed out during the course will be enough to follow the course.
- For a fairly complete overview of the target tracking problem, methods, and algorithm collected in one place, the following books are good entry points.
 - S. S. Blackman and R. Popoli. Design and analysis of modern tracking systems. Artech House radar library. Artech House, Inc, 1999. ISBN 1-5853-006-0.
 - Y. Bar-Shalom, P. Willett, and T. Xin. *Tracking and Data Fusion: A Handbook of Algorithms*. Yaakov Bar-Shalom Publishing, 2011. ISBN 0-9648-3-127-9.

Multi-Target Tracking Overview

Multi-Target Tracking: conceptual view

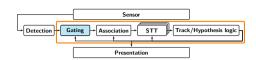
Components

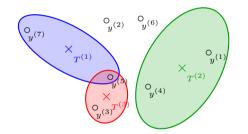
- 1. Detections/Observations
- 2. Gating
- 3. Association


- 4. Single-target tracking
- 5. Track and hypothesis logics
- 6. Presentation

Multi-Target Tracking: detection

- Considered done in this course
- Sensor level signal processing
- Heavily sensor dependent

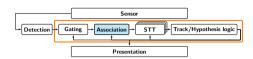


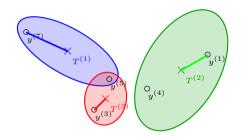


12/31

Multi-Target Tracking: gating

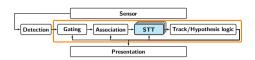
- Determine which observations could come from known targets
- Reduce tracking complexity

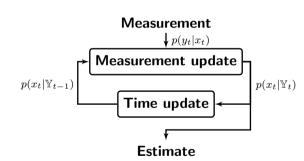




Multi-Target Tracking: association

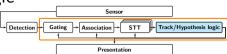
- Match observations to targets
- One or many different associations

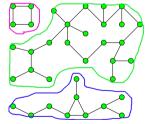




Multi-Target Tracking: STT

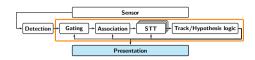
- Performed for each target independently, given associated observations
- Standard methods: EKF, UKF, PF, ...
- Yields state and uncertainty, given the association hypothesis





Multi-Target Tracking: track/hypothesis logic

- Compute probability of given track/association hypothesis
- Track management: birth, death
- Clustering for efficiency



Clustering independent parts

Multi-Target Tracking: presentation

- How to present the result?
- Not addressed in the course

Tracking Examples

Selected examples

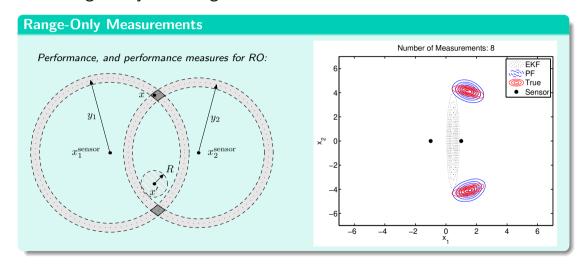
Selected examples (single target tracking/filtering and multiple target tracking):

STT Range-only measurements

STT Multiple models for maneuvering target tracking (IMM)

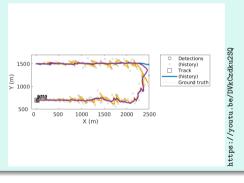
STT Track before detect

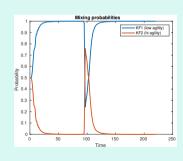
MTT Nearest Neighbor CV-model


MTT MHT

MTT PHD-filtering

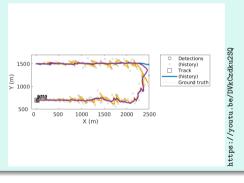
19/31

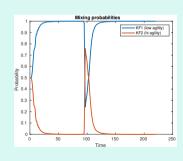

STT: Range-Only Tracking



The IMM method for two models

A radar tracking application is presented using the IMM method with two filters. One filter is used to handle a straight flying path accurately, whereas the other is used to manage maneuvers. Due to the nonlinearities in the measurement equation an EKF is used for the estimation.





The IMM method for two models

A radar tracking application is presented using the IMM method with two filters. One filter is used to handle a straight flying path accurately, whereas the other is used to manage maneuvers. Due to the nonlinearities in the measurement equation an EKF is used for the estimation.

STT: Track-Before-Detect (TkBD)

Track without first detecting the target SNR=13dB SNR=3dB Easy to detect a point target. Hard to detect a point target.

MTT: GNN CV-model

Global nearest neighbor tracking Tracker: GNN. Model: CV -17 Detections Tracks -17.5 (history) -18 -18.5 (km) -19 -19.5 -20 -20.5 -21 -1.5 -0.5 X(km)

 Global nearest neighbor (GNN) tracker

- Simple constant velocity (CV) model
- Problems handling the mixed level of agility

https://youtu.be/WPA2z-kw1

MTT: GNN CV-model

Global nearest neighbor tracking Tracker: GNN. Model: CV -17 Detections Tracks -17.5 (history) -18 -18.5 (km) -19 -19.5 -20 -20.5 -21 -1.5 -0.5 X(km)

 Global nearest neighbor (GNN) tracker

- Simple constant velocity (CV) model
- Problems handling the mixed level of agility

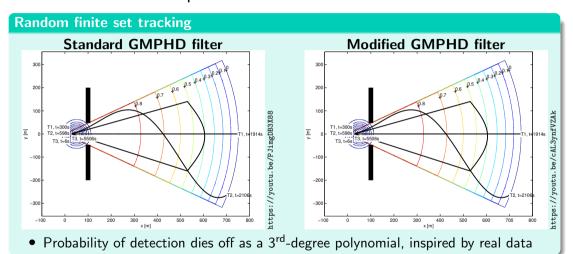
https://youtu.be/WPA2z-kw1

MTT: MHT IMM

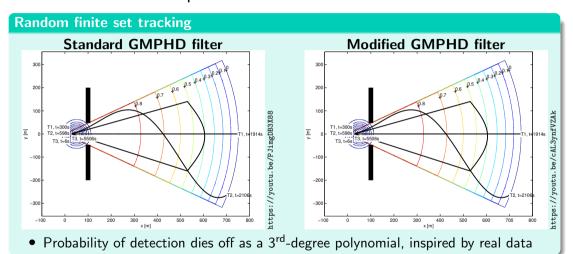
Multi-hypothesis tracking

- Multi-hypothesis tracker (MHT) resolves measurement ambiguities
- Interacting multiple models (IMM) better captures the mixed level of agility

MTT: MHT IMM


Multi-hypothesis tracking

- Multi-hypothesis tracker (MHT) resolves measurement ambiguities
- Interacting multiple models (IMM) better captures the mixed level of agility



MTT: PHD Filter Example

MTT: PHD Filter Example

Problem Formulation

Problem Formulation (1/3)

Definition: Target

A **target** is anything whose state (x) is of interest to us.

- The state can change over time with a dynamics which is itself unknown.
- Measurements/detections/observations (y^i) comes from uncertain origin.
- \bullet There are false measurements, $P_{\rm FA}>0.$
- \bullet Some measurements are missing, $P_{\mbox{\tiny D}} < 1.$
- Generally have no initial guess or estimate of the target state.

Problem Formulation (2/3)

Definition: Target tracking

Target tracking is the estimation of the number of targets present in the tracking volume and theirs states.

In its most general and abstract form, it is a special case of dynamic estimation theory.

Problem Formulation (2/3)

Definition: Target tracking

Target tracking is the estimation of the number of targets present in the tracking volume and theirs states.

In its most general and abstract form, it is a special case of dynamic estimation theory.

Object tracking

Target tracking is sometimes denoted **object tracking**. The word target is by some attributed with a negative/aggressive connotation, as something one intend to shoot down. It is argued, cars use object tracking not target tracking to obtain situational awareness.

Problem Formulation (3/3)

Definition: Track

A **track** is a sequence of measurements that has been decided or hypothesized by the tracker to come from a single source.

- Usually, instead of the list of actual measurements, sufficient statistics is maintained, e.g., mean and covariance in the case of a KF, particles in the case of a PF.
- In general, each measurement must be classified as either belonging to an existing track, a new track, or as being a false measurement.

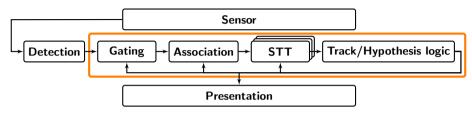
Target Types

Point target A target that can result in at most a single measurement in a scan.

- This means its extension is comparable to the sensor resolution.
- However, an extended target can also be treated as a point target by tracking its centroid or corners.

Extended target A target that can result in multiple measurements in a single scan.

Unresolved targets This denotes a group of close targets that can collectively result in measurements in the sensor.


Dim target This is a target whose signal energy is very low. These can be tracked much better with *track before detect* (TkBD) type approaches.

Summary

Summary

- Multi-target tracking is the problem of decide how many targets are present and how they move, given measurements with imperfections.
- Classic MTT can be divided in several stages: gating, association, single target tracking, track/hypothesis logic, and presentation.
- Single target tracking: Kalman type filters, particle filters

Decide what your ambitions are for the course!

Gustaf Hendeby www.liu.se

