
Target Tracking: exercise 2

Gustaf Hendeby
gustaf.hendeby@liu.se

Version: 2025-10-11

The purpose of this exercise is to introduce multi-target tracking (MTT),
and to get acquainted with common algorithms for single hypothesis trackers
(SHT). To do this, first, the simple simulation environment will be extended to
generate measurements from a multiple target scenario. After that, a framework
for multiple target tracking will be developed. In which in this exercise it will
make up the basis for a global nearest neighbor (GNN) tracker and then a joint
probabilistic detection association (JPDA) tracker. In the next exercise, the
GNN solution will be extended to a basic multi-hypothesis tracker (MHT). The
filters and track logic developed in the previous exercise will be used in the
process. Finally the developed GNN and JPDA algorithms should be evaluated
using a provided realistic dataset.

Note, the requested new functionality is available, e.g., in MATLAB’s Sensor
Fusion and Tracking toolbox. You are not allowed to use it, as the purpose of
the exercise is to practice how to create the functionality.

1 Infrastructure

Task: Extend the software developed in Exercise 1 to be able to simulate measurements
from several targets at a measurement scan.

In MATLAB, we suggest the same function as before:

function Y = generatedata(X, sensor , clutter)

where X is a cell array of state trajectories (one time per column), sensor is a
struct comprising h the measurement function, R the measurement covariance
(assume white Gaussian noise), PD the probability of detection; and clutter

a struct comprising volume that span the tracking volume, and beta clutter
rate (assume the number of clutter to be Poisson distributed, and the clutter
uniformly distributed in the volume). The output is a cell array for each time
instance, with zero or more measurements.

Task: Extend the set of trajectories, to the following set of trajectories:

T1 Target travels 2000m due east, at 100 km/h, starting in (0, 1000)m.

T2 Target traveling due east makes a 180◦ clock-wise turn following a circu-
lar path with radius 200m, at 50 km/h, ending up heading west, starting in
(2000, 1000)m.

1



0 500 1000 1500 2000 2500

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
1

T
2

T
3

T
5

T
6

Radar

Figure 1: Illustration of the specified trajectories T1–T6.

T3 Target travels 2000m due west, at 70 km/h, starting in (2000, 600)m.

T4 Connect the three segments (T1–T2–T3) above to get a trajectory of a maneu-
vering target.

T5 Target travels 2000m with 30◦ clock-wise angle to the x-axis, at 100 km/h,
starting in (200, 1200)m.

T6 Target travels 1000m due south, 50 km/h, starting in (1500, 1800)m.

See Figure 1 for an illustration.

These trajectories will be used in the rest of this exercise. Unless other-
wise stated, assume a range-bearing radar (σr = 100m and σϕ = 0.01) with
probability of detection Pd = 0.9 to generate the measurements. Furthermore,
assume Poisson clutter with intensity βfaV = 2, uniformly distributed in the
tracking volume. The sample time can be set to T = 1.

For this exercise, simulate the trajectories T1, T3, T5, and T6 at the same
time. That is, your data should have four simultaneous targets present at most
of the time.

2 Single Hypothesis Multi-Target Tracker

In this part of the exercise you will design two single hypothesis multi-target
trackers, for different types of targets, and add functionality to handle both
missing data and clutter. It will rely on code developed in the previous exer-
cise: simulation, track logic, etc. The focus is the principles, hence getting the
most efficient implementation possible is not very important and things such as
clustering and other tricks will be disregarded.

2.1 Tracker Structure

The same basic structure can be utilized when designing most single hypothesis
trackers. It is strongly recommended to set up the following template code, and

2



then use it for both the GNN and JPDA part of this exercise. (The structure
will also help you in coming exercises, hence it will pay of to put some effort
into getting this right.)

First of all, make sure to combine all relevant information about a track (i.e.,
tracking filter, track logic, and possibly track label) into one class or structure.
These will be passed around different functions, and keeping it all in one object
simplifies the bookkeeping considerably. Throughout the algorithm, keep tenta-
tive and confirmed tracks separated in two different containers. In many cases
they are treated separately.

As a new scan arrives with new observations, do the following:

1. For all tracks: Predict the tracks to the time of the scan.

2. For all confirmed tracks:

(a) Gate with the measurements in the scan, to obtain the validation
matrix.

(b) Create the association matrix.

(c) Associate measurement to the tracks.

(d) Update the tracks; both track logic and the filters using the obtained
associations. (Do not forget to update the tracks that end up without
measurements.)

(e) Remove targets that are considered dead after updating the track
logic.

(f) Remove the measurements from the scan that has been gated with
any confirmed target, even if the measurement was in the end not
used in the association hypothesis or the track it was associated with
died.

3. For all tentative tracks:

(a) Repeat the steps for the confirmed tracks, this time using the set of
tentative tracks.

(b) Move tracks that have been confirmed from the set of tentative tracks
and add them to the set of confirmed tracks.

4. For all remaining measurements (not gated with any confirmed or tentative
track):

(a) Randomly pick one of the remaining measurements, and create a new
tentative track, initialize both filter and track logic. Gate with the
remaining measurements, and remove any measurements gated with
the new track.

(b) Repeat (a) until no more measurements are left.

2.2 Global Nearest Neighbor (GNN) Tracker

Task: Implement a GNN tracker. Use the track logic from exercise 1 (select one method).
An implementation of the auction algorithm has been supplied for your convenience,
to allow for the focus to be on the tracking algorithm itself.

3



As in the previous exercise. Introduce new difficulties in steps to be able to
more easily debug your code. Start with noise-free measurements, no missed
detections, and no clutter. Then add the difficulties one at the time, this way it
is easier to predict the expected behavior and find where the algorithm breaks
down.

Task: Apply the GNN to the simulated measurements from trajectories T1, T3, T5, and
T6. Evaluate the tracking performance, by considering:

• Evaluate the performance both in position plots and in time. Use different
colors (or symbols) for different track labels. Compare with the true known
trajectory.

• Elaborate on tracking accuracy in terms of track loss etc, if applicable.

Make sure to indicate tracks and parts of tracks that are tentative.

2.3 JPDA

Task: Implement a JPDA tracker. Use the track logic from exercise 1 (select one method).
An implementation of a function to compute the probabilities for associating a
measurement to a specific target has been provided for your convenience, to allow
for the focus to be on the tracking algorithm itself.

Task: Evaluate the JPDA tracker the same way as you just evaluated the GNN using
simulated data.

2.4 Mysterious Data

In the last part of the multi target tracking exercise, you should estimate the
trajectories of the targets given by the measurements from a range-bearing
radar in the file ex2data.mat available as Y. The data is formatted the same
way as the output of the simulator described above. The data is realistic, but
is constrained to 2D, containing clutter and lost detections. The sample time is
approximately T = 0.26 s (between measurement scans), and the radar sensor
was placed in the origin.

Task: Evaluate and compare GNN and JPDA on the mysterious dataset.

4


